P425/1 PURE MATHEMATICS Paper 1 August, 2019 3hrs

UNNASE MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt all the eight questions in Section A and Not more than five from
- Section B.
- Any additional question(s) will not be marked.
- All working must be shown clearly.
- Silent non-programmabe calculators and mathematical tables with a list of formulae may be used.
- Graph papers are provided.

SECTION A: (40MARKS)

Answer **all** the questions in this Section.

- 1. Find the sum of the numbers between 5 and 250 which are exactly divisible by 4. (5marks)
- 2. Given that the line; $\frac{x-3}{4} = \frac{y-4}{-3} = \frac{z+3}{4}$ meets the plane 4x 3y 4z = 3 at *M*. (5marks)

3. Use the substitution $x = sin\theta$ to find the integral; $\int \frac{2x^3}{\sqrt{1-x^2}} dx$. (5marks)

- 4. Express $tan(45^0 + x)$ in terms of tanx. Hence prove that; $tan75^0 = 2 + \sqrt{3}$. (5marks)
- 5. Given A(3, 4) and B(-2, 3), find the equation of the locus of points P(x, y) which divide *AB* in the ratio 2:1. (5marks)
- 6. A women football team manager intends to take 18 players for a tournament. The manager has 2 goal keepers, 8 defenders, 4 mid fielders and 8 strikers. In how many ways can the team be chosen if it must contain both goal keepers, atleast 3 midfielders and 7 strikers. (5marks)

7. Solve the differential equation;
$$Cosecx \frac{dy}{dx} = e^x cosecx + 3x$$
. (5marks)

8. Solve for x in the equation; $log_{(x+3)}(2x+3) + log_{(x+3)}(x+5) = 2.(5marks)$

SECTION B (60MARKS)

Attempt any *five* questions from this Section.

- 9. Given that $f(x) = \frac{x^3 + 2x^2 + 61}{(x+3)^2(x^2+4)}$, express f(x) in partial fraction. Hence evaluate; $\int_0^1 f(x) dx$. (12marks)
- 10. $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ are two variable points on the parabola $y^2 = 4ax$. If *PQ* subtends a right angle at the origin, prove that pq = -4.
 - a) Prove that *PQ* passes through a fixed point on the axis of the parabola.
 - b) The tangents at P and Q meet at R, find the equation of the locus of R. (6marks)

11. a) Differentiate
$$tan^{-1}\left(\frac{\sqrt{InX}}{e^{2x}}\right)$$
. (6marks)

b) Evaluate the integral;
$$\int_0^{\frac{\pi}{6}} \frac{2\cos\theta + \sin\theta}{\cos\theta - \sin\theta} d\theta$$
. (6marks)

12. a) P is the foot of the perpendicular from the point A(1, 1, 1) to the line $\frac{X-1}{2} = \frac{y-1}{1} = \frac{Z-2}{1}$. Determine the perpendicular distance of A from the line to 4 dp's. (5marks)

- b) Given the points A(-1, 2, 3) and P(2, 3, 4). If the point B(a, 2a, 3) lies on the plane 2x - 3y + 4z + 8 = 0. Find the value of a and the angle between *AP* and *AB*. (7marks)
- 13. a) Solve the equation $tan\theta cot\theta = -1$ for $0^0 \le \theta \le 360^0$. (5marks)

b) Prove that
$$\frac{Sin3\theta}{1+2cos2\theta} = Sin\theta$$
. Hence show that $Sin15^0 = \frac{\sqrt{3}-1}{2\sqrt{2}}$. (7marks)

14. a) Prove that
$$log_a^b = \frac{1}{log_b a}$$
. hence solve the equation $log_2 x + log_x 2 = 2.5$. (5marks)

b) A polynomial is given by $P(x) = x^3 + Ax^2 + x - 6$. The ratio of the remainder when P(x) is divided by (X + 1) to the remainder when divided by (x - 2)is -1:5. find the value of A. (7marks)

15. a) If
$$Z = \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$$
, express Z in modulus argument form. (5marks)

- b) Use demoiver's theorem to prove that $2\cos\theta = Z + \frac{1}{Z}$ then $2\cos n\theta = Z^n + \frac{1}{Z^n}$. Hence solve the equation $5Z^4 - 11Z^3 + 6Z^2 - 11Z + 5 = 0.$ (7marks)
- 16. a) Determine the nature of the turning points of the curve $y = x(1-x)^2$. (5marks)
 - b) The acceleration of a particle is proportional to 2t-3. If the velocity increases from 4ms⁻¹ to 8ms⁻¹ in the first 2 seconds of motion, find;
 i) its initial acceleration (5marks)
 - ii) the velocity after 5 seconds. (2marks)